Kinetic nucleation and ions in boreal forest particle formation events
نویسندگان
چکیده
In order to gain a more comprehensive picture on different mechanisms behind atmospheric particle formation, measurement results from QUEST 2-campaign are analyzed with an aid of an aerosol dynamic model. A special emphasis is laid on air ion and charged aerosol dynamics. Model simulations indicate that kinetic nucleation of ammonia and sulphuric acid together with condensation of sulphuric acid and low-volatile organic vapours onto clusters and particles explain basic features of particle formation events as well as ion characteristics. However, an observed excess of negative ions in the diameter range 1.5–3 nm and overcharge of 3–5 nm particles demonstrate that ions are also involved in particle formation. These observations can be explained by preferential condensation of sulphuric acid onto negatively charged clusters and particles and/or contribution of ion-induced nucleation on particle formation. According to model simulations, which assume that the nucleation rate is equal to the sulfuric acid collision rate, the relative contribution of ion-based particle formation seems to be smaller than kinetic nucleation of neutral clusters. Conducted model simulations also corroborate the recently-presented hypothesis according to which a large number of so-called thermodynamically stable clusters (TSCs) having a diameter between 1–3 nm exist in the atmosphere. TSCs were found to grow to observable sizes only under favorable conditions, e.g. when the pre-existing particle concentration was low. Correspondence to: L. Laakso ([email protected])
منابع مشابه
Nanoparticles in boreal forest and coastal environment: a comparison of observations and implications of the nucleation mechanism
The detailed mechanism of secondary new particle formation in the atmosphere is still under debate. It is proposed that particle formation happens via activation of 1–2 nm atmospheric neutral molecular clusters and/or large molecules. Since traditional instrumentation does not reach these sizes, the hypothesis has not yet been verified. By directly measuring particle size distributions down to ...
متن کاملCharged and total particle formation and growth rates during EUCAARI 2007 campaign in Hyytiälä
Despite the fact that frequent aerosol formation has been observed in various locations in the atmosphere, the overall magnitude of the new particle formation as a particle source is still unclear. In order to understand the particle formation and growth processes, we investigate the magnitudes of the particle formation and growth rates at the size where the real atmospheric nucleation and acti...
متن کاملDetecting charging state of ultra-fine particles: instrumental development and ambient measurements
The importance of ion-induced nucleation in the lower atmosphere has been discussed for a long time. In this article we describe a new instrumental setup – Ion-DMPS – which can be used to detect contribution of ion-induced nucleation on atmospheric new particle formation events. The device measures positively and negatively charged particles with and without a bipolar charger. The ratio between...
متن کاملIon production rate in a boreal forest based on ion, particle and radiation measurements
In this study the ion production rates in a boreal forest were studied based on two different methods: 1) cluster ion and particle concentration measurements, 2) external radiation and radon concentration measurements. Both methods produced reasonable estimates for ion production rates. The average ion production rate calculated from aerosol particle size distribution and air ion mobility distr...
متن کاملCase studies of particle formation events observed in boreal forests: implications for nucleation mechanisms
Aerosol nucleation events observed worldwide may have significant climatic and health implications. However, the specific nucleation mechanisms remain ambiguous. Here, we report case studies of eight nucleation events observed during an intensive field campaign at a boreal forest site (Hyytiälä, Finland) in spring 2005. The present analysis is based on comprehensive kinetic simulations using an...
متن کامل